Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Clin Nutr ; 41(10): 2244-2263, 2022 10.
Article in English | MEDLINE | ID: covidwho-1977149

ABSTRACT

Low muscle mass and malnutrition are prevalent conditions among adults of all ages, with any body weight or body mass index, and with acute or chronic conditions, including COVID-19. This article synthesizes the latest research advancements in muscle health and malnutrition, and their impact on immune function, and clinical outcomes. We provide a toolkit of illustrations and scientific information that healthcare professionals can use for knowledge translation, educating patients about the importance of identifying and treating low muscle mass and malnutrition. We focus on the emerging evidence of mitochondrial dysfunction in the context of aging and disease, as well as the cross-talk between skeletal muscle and the immune system. We address the importance of myosteatosis as a component of muscle composition, and discuss direct, indirect and surrogate assessments of muscle mass including ultrasound, computerized tomography, deuterated creatine dilution, and calf circumference. Assessments of muscle function are also included (handgrip strength, and physical performance tests). Finally, we address nutrition interventions to support anabolism, reduce catabolism, and improve patient outcomes. These include protein and amino acids, branched-chain amino acids, with a focus on leucine; ß-hydroxy-ß-methylbutyrate (HMB), vitamin D; n-3 polyunsaturated fatty acids (n-3 PUFA), polyphenols, and oral nutritional supplements. We concluded with recommendations for clinical practice and a call for action on research focusing on evaluating the impact of body composition assessments on targeted nutrition interventions, and consequently their ability to improve patient outcomes.


Subject(s)
COVID-19 , Fatty Acids, Omega-3 , Malnutrition , Adult , Amino Acids/metabolism , Amino Acids, Branched-Chain , Creatine , Delivery of Health Care , Dietary Supplements , Fatty Acids, Omega-3/metabolism , Fatty Acids, Unsaturated/metabolism , Hand Strength , Humans , Leucine , Malnutrition/drug therapy , Muscle Strength , Muscle, Skeletal/physiology , Valerates , Vitamin D/therapeutic use
2.
JMIR Pediatr Parent ; 4(4): e30160, 2021 Nov 25.
Article in English | MEDLINE | ID: covidwho-1542261

ABSTRACT

BACKGROUND: eHealth and web-based service delivery have become increasingly common during the COVID-19 pandemic. Digital interventions may be highly appealing to young people; however, their effectiveness compared with that of the usual face-to-face interventions is unknown. As nutrition interventions merge with the digital world, there is a need to determine the best practices for digital interventions for children. OBJECTIVE: The aim of this study is to examine the effectiveness of digital nutrition interventions for children on dietary outcomes compared with status quo interventions (eg, conventional face-to-face programming or nondigital support). METHODS: We conducted an umbrella review of systematic reviews of studies assessing primary research on digital interventions aimed at improving food and nutrition outcomes for children aged <18 years compared with conventional nutrition education were eligible for inclusion. RESULTS: In total, 11 systematic reviews published since 2015 were included (7/11, 64%, were of moderate quality). Digital interventions ranged from internet, computer, or mobile interventions to websites, programs, apps, email, videos, CD-ROMs, games, telehealth, SMS text messages, and social media, or a combination thereof. The dose and duration of the interventions varied widely (single to multiple exposures; 1-60 minutes). Many studies have been informed by theory or used behavior change techniques (eg, feedback, goal-setting, and tailoring). The effect of digital nutrition interventions for children on dietary outcomes is small and inconsistent. Digital interventions seemed to be the most promising for improving fruit and vegetable intake compared with other nutrition outcomes; however, reviews have found mixed results. CONCLUSIONS: Owing to the heterogeneity and duration of digital interventions, follow-up evaluations, comparison groups, and outcomes measured, the effectiveness of these interventions remains unclear. High-quality evidence with common definitions for digital intervention types evaluated with validated measures is needed to improve the state of evidence, to inform policy and program decisions for health promotion in children. Now is the time for critical, robust evaluation of the adopted digital interventions during and after the COVID-19 pandemic to establish best practices for nutrition interventions for children.

SELECTION OF CITATIONS
SEARCH DETAIL